make_decision_trial.Rd
Given a res_list object, checks the supplied decision criteria and saves the results in the res_list file.
make_decision_trial(
res_list,
which_cohort,
Bayes_Sup1 = NULL,
Bayes_Fut1 = NULL,
Bayes_Sup2 = NULL,
Bayes_Fut2 = NULL,
w = 0.5,
analysis_number,
beta_prior = 0.5,
hist_lag,
endpoint_number,
analysis_time,
dataset,
hist_miss = TRUE,
sharing_type,
...
)
List item containing individual cohort trial results so far in a format used by the other functions in this package
Current cohort that should be evaluated
List of matrices with rows corresponding to number of multiple Bayesian posterior two-arm combination criteria for superiority of histology endpoint 1
List of matrices with rows corresponding to number of multiple Bayesian posterior two-arm combination criteria for futility of histology endpoint 1
List of matrices with rows corresponding to number of multiple Bayesian posterior two-arm combination criteria for superiority of histology endpoint 2
List of matrices with rows corresponding to number of multiple Bayesian posterior two-arm combination criteria for futility of histology endpoint 2
If dynamic borrowing, what is the prior choice for w. Default is 0.5.
1st, second or third analysis?
Prior parameter for all Beta Distributions. Default is 0.5.
Histology Lag
Should histology endpoint 1 or 2 be evaluated?
Platform Time of Analysis
Dataset to be used for analysis
Whether or not to exclude missing histology data
Type of Data Sharing to perform
Further arguments inherited from simulate_trial
List containing original res_list and results of decision rules
# Example 1
# Initialize empty data frame
cols <- c("PatID", "ArrivalTime", "Cohort", "Arm", "RespHist1", "RespHist2", "HistMissing")
df <- matrix(nrow = 100, ncol = length(cols))
colnames(df) <- cols
df <- as.data.frame(df)
df$PatID <- 1:100
df$ArrivalTime <- sort(runif(100, min = 0, max = 5))
df$Cohort <- sample(1:2, 100, replace = TRUE)
df$Arm <- sample(c("Combo", "Plac"), 100, replace = TRUE)
df$RespHist1 <- sample(0:1, 100, replace = TRUE)
df$RespHist2 <- sample(0:1, 100, replace = TRUE)
df$HistMissing <- sample(0:1, 100, replace = TRUE, prob = c(0.95, 0.05))
# Initialize res_list Object
res_list <-
rep(
list(
list(
Meta = list(
decision = rep("none", 3),
decision_hist1 = rep("none", 3),
decision_hist2 = rep("none", 3),
start_n = 0,
start_time = 0,
pat_enrolled = 0
),
Arms = rep(
list(
list(
rr = NULL,
hist_observed = 0
)
),
2
)
)
),
2
)
arm_names <- c("Comb", "Plac")
for (i in 1:2) {
names(res_list)[i] <- paste0("Cohort", i)
names(res_list[[i]]$Arms) <- arm_names
res_list[[i]]$Arms$Comb$rr <- matrix(c(0.2, 0.2), ncol = 2)
res_list[[i]]$Arms$Plac$rr <- matrix(c(0.1, 0.1), ncol = 2)
}
sharing_type <- "all"
analysis_number <- 3
which_cohort <- 1
endpoint_number <- 2
hist_lag <- 1
analysis_time <- 6
# Comparison IA1
Bayes_Sup11 <- matrix(nrow = 2, ncol = 2)
Bayes_Sup11[1,] <- c(0.00, 0.95)
Bayes_Sup11[2,] <- c(0.10, 0.80)
# Comparison IA2
Bayes_Sup12 <- matrix(nrow = 2, ncol = 2)
Bayes_Sup12[1,] <- c(0.00, 0.95)
Bayes_Sup12[2,] <- c(NA, NA)
# Comparison IA3
Bayes_Sup13 <- matrix(nrow = 2, ncol = 2)
Bayes_Sup13[1,] <- c(0.00, 0.95)
Bayes_Sup13[2,] <- c(0.10, 0.80)
Bayes_Sup1 <- Bayes_Sup2 <- list(list(Bayes_Sup11), list(Bayes_Sup12), list(Bayes_Sup13))
# DO NOT RUN
res_list2 <-
make_decision_trial(
res_list = res_list, which_cohort = which_cohort,
analysis_number = analysis_number, endpoint_number = endpoint_number,
Bayes_Sup1 = Bayes_Sup1, Bayes_Sup2 = Bayes_Sup2,
dataset = df, analysis_time = analysis_time, hist_lag = hist_lag,
sharing_type = sharing_type
)