An artificially simulated dataset containing bivariate normal outcomes. Outcomes depend on four input variables in a very simple manner. For each set of input variables, 1000 replications are simulated.
ExampleData1
An object of class data.frame
with 81000 rows and 7 columns.
if (FALSE) {
library(mvtnorm)
input1 <- c("A", "B", "C")
input2 <- c(1, 2, 3)
input3 <- c("Z", "Y", "X")
input4 <- c(11, 12, 13)
replications <- 1:1000
scenarios <-
expand.grid(
replications = replications,
input1 = input1,
input2 = input2,
input3 = input3,
input4 = input4
)
for (i in 1:nrow(scenarios)) {
var <- ifelse(scenarios$input1[i] == "A", 1, 10)
cor <- ifelse(scenarios$input3[i] == "Z", 0.7, 0.1)
out <- rmvnorm(
1,
mean = c(scenarios$input1[i], scenarios$input3[i]),
sigma = matrix(c(var, cor, cor, var), nrow = 2)
)
scenarios$output1[i] <- out[1]
scenarios$output2[i] <- out[2]
}
ExampleData1 <- scenarios
usethis::use_data(ExampleData1)
}